ઉપવલય $x^2 + 4y^2 = 16$ પરના બિંદુ $P$ આગળનો અભિલંબ એ $x$-અક્ષને $Q$ આગળ મળે છે. જો $M$ એ રેખાખંડ $PQ$ નું મધ્યબિંદુ હોય, તો $M$ નો બિંદુપથ એ આપેલ ઉપવલયના નાભિલંબને કયા બિંદુઓ આગળ છેદે ?
$\left( { \pm \,\,\frac{{3\sqrt 5 }}{2},\,\, \pm \,\,\frac{2}{7}} \right)$
$\left( { \pm \,\,\frac{{3\sqrt 5 }}{2},\,\, \pm \,\,\frac{{\sqrt {19} }}{4}} \right)$
$\left( { \pm \,\,2\sqrt 3 ,\,\, \pm \,\,\frac{1}{7}} \right)$
$\left( { \pm \,\,2\sqrt 3 ,\,\, \pm \,\,\frac{{4\,\sqrt 3 }}{7}} \right)$
જો ઉપવલય $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ પરના બિંદુએથી બનાવેલ સ્પર્શક યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તથા $O$ એ ઉંગમબિંદુ હોય તો ત્રિકોણ $OAB$ નું ન્યૂનતમ ક્ષેત્રફળ ચો. એકમ માં મેળવો.
જો $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, હોય તો અનુક્રમે $x$ અને $y$ એ . . . . અંતરાલમાં આવે.
જો $\alpha$ અને $\beta$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નાભિજીવાના અંત્યબિંદુઓના ઉત્કેન્દ્રીકરણ હોય, તો $tan\ \alpha /2. tan\ \beta/2 = ....$
જેની ઉત્કેન્દ્રતા $e = \frac{1}{2}$ તથા એક નિયામિકા $x=4$ હોય તેવા ઊગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
ઉપવલયમાં તેની નાભિઓ વચ્ચેનું અંતર $6$ અને પ્રધાન અક્ષ $8$ છે. તો તેની ઉત્કેન્દ્રતા.....