${\text{c}}$ ના જે મુલ્ય માટે $y\, = \,\,\,4x\,\, + \;\,c$ એ વક્ર $\frac{{{x^2}}}{4}\,\, + \;\,{y^2}\, = \,\,1\,\,$ ને સ્પર્શે તો મુલ્યોની સંખ્યા........
$0$
$1$
$2$
અનંત
અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભિઓ માંથી પસાર થતું અને $(0,3) $ કેન્દ્ર ધરાવતું વર્તૂળનું સમીકરણ મેળવો.
જે ઉપવલયની અક્ષો યામાક્ષો હોય અને જે બિંદુ $(-3, 1)$માંથી પસાર થતું હોય અને ઉત્કેન્દ્રીતા $\sqrt {2/5} $ હોય, તે ઉપવલયનું સમીકરણ :
ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ના નાભિલંબોના અંત્યબિંદુઓ આગળના સ્પર્શકો દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ (ચોરસ એકમમાં) મેળવો.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ $y$-અક્ષ પર હોય અને બિંદુઓ $(3, 2)$ અને $(1, 6)$ માંથી પસાર થાય.