$\lambda $ ની એવી શકય કિમતોનો ગણ મેળવો કે જેથી વર્તુળ $x^2 + y^2 - 4x - 4y+ 6\, = 0$ અને $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ ને બરાબર બે સામાન્ય સ્પર્શકો હોય 

  • [JEE MAIN 2014]
  • A

    $(12, 32)$

  • B

    $(18, 42)$

  • C

    $(12, 24)$

  • D

    $(18, 48)$

Similar Questions

વર્તુળ $x^2 + y^2 = 4$ અને  $x^2 + y^2 + 6x + 8y - 24 = 0$ નોન સામાન્ય સ્પર્શક બીજા ........... બિંદુ માંથી પણ પસાર થાય છે. 

  • [JEE MAIN 2019]

જો $A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$ ; $B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\}$ અને $C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$ હોય તો $|r|$ ની ન્યૂનતમ કિમંત મેળવો કે જેથી $A \cup B \subseteq C$ થાય.

  • [JEE MAIN 2021]

ધારોકે $C: x^2+y^2=4$ અને $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ એ બે વર્તુળો છે. જો વર્તુળો $C^{\prime \prime}$ અને $C^{\prime}$ બે ભિન્ન બિંદુઓમાં છેદે તેવી $\lambda$ ની તમામ કિંમતોનો ગણ ${R}-[a, b]$ હોય, તો બિંદુ $(8 a+12,16 b-20)$ એ_____________ વક્ર પર આવેલું છે.

  • [JEE MAIN 2024]

જો સમાન $'a'$ ત્રિજ્યા વાળા અને $(2, 3)$ અને $(5, 6)$ આગળ કેન્દ્ર વાળા વર્તૂળો લંબછેદી હોય તો $a$ મેળવો.

વર્તૂળો ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ અને ${x^2} + {y^2} - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુમાં છેદે તો,

  • [IIT 1989]