એક ઉપવલય પરનું બિંદુ $(4, -1)$ ને રેખા $x + 4y - 10 = 0$ સ્પર્શેં છે જો તેની અક્ષો યામાક્ષો સાથે સાંપતી હોય, તો તેનું સમીકરણ $(a > b)$
$\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{15}}\,\, = \,\,1$
$\frac{{{x^2}}}{{80}}\,\, + \;\,\frac{{{y^2}}}{5}\,\, = \,\,1$
$\frac{{{x^2}}}{{20}}\,\, + \;\,\frac{{{y^2}}}{5}\,\, = \,\,1$
$\frac{{{x^2}}}{5}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(±3,\,0)$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(0,\,±2)$
ઉપવલય $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ ની નાભિ અને નાભિલંબની લંબાઈ અનુક્રમે $( \pm 5,0)$ અને $\sqrt{50}$ છે, તો અતિવલય $\frac{x^2}{a^2}-\frac{y^2}{a^2 b^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ.........................
$c$ ની કેટલી કિમંતો માટે રેખા $y = 4x + c$ એ વક્ર $\frac{{{x^2}}}{4} + {y^2} = 1$ ને સ્પર્શે છે .
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો કોઈપણ સ્પર્શક અક્ષો પર $h$ અને $k$ લંબાઈનો અંત:ખંડ કાપે, તો.....