$k$ ના કયા મુલ્ય માટે વર્તૂળો $x^2 + y^2 + 5x + 3y + 7 = 0$ અને $x^2 + y^2 - 8x + 6y + k = 0$ એકબીજાને લંબ છેદે ?
$4$
$18$
$-18$
$-4$
જો એક વર્તૂળ, રેખાઓ $\lambda x - y + 1 = 0$ અને $x - 2y + 3 = 0$ ના યામ અક્ષો સાથેના છેદબિંદુમાંથી પસાર થાય, તો $\lambda$ નું મુલ્ય :
વર્તૂળો ${x^2} + {y^2} + 2ax + cy + a = 0$ અને ${x^2} + {y^2} - 3ax + dy - 1 = 0$ બે ભિન્ન બિંદુઓ $P$ અને $Q$ માં છેદે છે. $a$ ની કેટલી કિંમતો માટે રેખા $5x + by - a = 0$ બિંદુ $P$ અને $Q$ માંથી પસાર થાય..
બિદુઓ $(0, 0)$ અને $(1, 0)$ માંથી પસાર થતા અને વર્તૂળ ${x^2} + {y^2} = 9$ સ્પર્શતું હોય તેવા વર્તૂળનું કેન્દ્ર મેળવો.
બિંદુ $(1, 1) $ માંથી અને વર્તૂળો $x^2 + y^2 = 6$ અને $x^2 + y^2 -6x + 8 = 0$ ના છેદ બિંદુમાંથી પસાર થતા વર્તૂળનું સમીકરણ....
જો વર્તુળ $C_1 : x^2 + y^2 - 2x- 1\, = 0$ પરના બિંદુ $(2, 1)$ પાસે આવેલ સ્પર્શક વર્તુળ $C_2$ જેનું કેન્દ્ર $(3, - 2)$ હોય તેની જીવા છે જેની લંબાઈ $4$ થાય તો વર્તુળ $C_2$ ની ત્રિજ્યા મેળવો.