જે બિંદુ $ (1, 2)$ માંથી વર્તૂળો $x^2 + y^2 + x + y - 4 = 0$ અને $ 3x^2 + 3y^2 - x - y + k = 0 $ પર દોરેલા સ્પર્શકોની લંબાઈ $4 : 3 $ના ગુણોત્તરમાં હોય, તો $k = ……….$
$21/ 2$
$7/2$
$-21/ 4$
$7/4$
જો બિંદુ $(p, q)$ માંથી વર્તૂળ $x^{2} + y^{2} = px + qy$ (જ્યાં $pq \neq 0$) પર દોરેલી બે ભિન્ન જીવાઓ $x-$અક્ષ દ્વારા દુભાગે છે તો ....
બિંદુ $ (0, 1)$ માંથી વર્તૂળ $x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોની જોડનું સમીકરણ . . . . . .
ધારોકે વર્તુળ $x^2+y^2-3 x+10 y-15=0$ પરનાં બિંદુઓ $A(4,-11)$ અને $B(8,-5)$ પરનાં સ્પર્શકો બિંદુ $C$ પર છેદે છે. તો જેનું કેન્દ્ર $C$ હોય અને $A$ તથા $B$ ને જોડતી રેખા જેનો સ્પર્શક હોય તેવા વર્તુળની $............$ ત્રિજ્યા છે.
$p$ ના કયા શક્ય મૂલ્ય માટે રેખા $x\ cos\ \alpha + y\ sin\ \alpha = p$ એ વર્તૂળે $x^2 + y^2 - 2qx\ cos\alpha - 2qy\ sin\ \alpha = 0$ નો સ્પર્શક હોય ?
વર્તૂળ ${x^2} + {y^2} = 5$ નો બિંદુ $(1,-2)$ આગળનો સ્પર્શક એ વર્તૂળ ${x^2} + {y^2} - 8x + 6y + 20 = 0$ ને . . . . .