$200$ અને $300$  કદ વાળા બે સમૂહનો મધ્યક અનુક્રમે $25 $ અને $10 $ છે. તેમનું પ્રમાણિત વિચલન અનુક્રમે $3$ અને $4$ છે.  $500$ કદના સંયુક્ત નમૂનાનું વિચરણ કેટલું થાય છે ?

  • A

    $64$

  • B

    $65.2$

  • C

    $67.2$

  • D

    $64.2$

Similar Questions

ધારોકે $X _{1}, X _{2}, \ldots, X _{18}$ એ $18$ અવલોકન છે કે જેથી $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ અને $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ જ્યાં $\alpha$ અને $\beta$ ભિન્ન વાસ્તવિક સંખ્યાઓ છે. જે આ અવલોકનોનું પ્રમાણિત વિચલન $1$ હોય, તો $|\alpha-\beta|$ નું મૂલ્ય ........ થાય. .

  • [JEE MAIN 2021]

આપેલ અવલોકન $: 10, 14, 11, 9, 8, 12, 6$ નો ચલનાંક મેળવો.

જો $\,\sum\limits_{i\, = \,1}^{10} {({x_i}\, - \,\,15)\,\, = \,\,12} \,\,$ અને $\,\,\sum\limits_{i\, = \,1}^{10} {{{({x_i}\, - \,\,15)}^2}\, = \,\,18} $ હોય, તો અવલોકનનો ${{\text{x}}_{\text{1}}},\,{x_2}\,.........\,\,{x_{10}}$ નું પ્રમાણિત વિચલન મેળવો. 

$3,7,12, a, 43-a$ નું વિચરણ, એક પ્રાકૃતિક સંખ્યા થાય તેવા $a \in N$ ના મૂલ્યોની સંખ્યા $\dots\dots\dots$ છે.  (મધ્યક $=13$)

  • [JEE MAIN 2022]

જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.

  • [JEE MAIN 2018]