જો $\,\sum\limits_{i\, = \,1}^{10} {({x_i}\, - \,\,15)\,\, = \,\,12} \,\,$ અને $\,\,\sum\limits_{i\, = \,1}^{10} {{{({x_i}\, - \,\,15)}^2}\, = \,\,18} $ હોય, તો અવલોકનનો ${{\text{x}}_{\text{1}}},\,{x_2}\,.........\,\,{x_{10}}$ નું પ્રમાણિત વિચલન મેળવો.
$\frac{2}{5}$
$\frac{3}{5}$
$\frac{4}{5}$
આપેલ પૈકી એક પણ નહિં
જો સંખ્યાઓ $ 2,3,a $અને $11$ નું પ્રમાણિત વિચલન $3.5$ હોય ,તો નીચેનામાંથી કયું સત્ય છે?
સંખ્યાઓ $a, b, 8, 5, 10$ નો મધ્યક $6$ છે તથા તેમનું વિચરણ $6.8$ છે.જો આ સંખ્યાઓનું મધ્યક થી સરેરાશ વિચલન $M$હોય,તો $25\,M=\dots\dots\dots$
ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.
વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.
વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$ નો સમાંતર મધ્યક $4\,\bar x$છે.
ગ્રૂપના પહેલા સેમ્પલમાં કુલ $100$ વસ્તુ છે કે જેનો મધ્યક $15$ અને પ્રમાણિત વિચલન $3 $ છે અને જો પૂરા ગ્રૂપમાં કુલ $250$ વસ્તુ છે કે જેનો મધ્યક $15.6$ એન પ્રમાણિત વિચલન $\sqrt{13.44}$ હોય તો બીજા સેમ્પલનું પ્રમાણિત વિચલન મેળવો.
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |