જો $\,\sum\limits_{i\, = \,1}^{10} {({x_i}\, - \,\,15)\,\, = \,\,12} \,\,$ અને $\,\,\sum\limits_{i\, = \,1}^{10} {{{({x_i}\, - \,\,15)}^2}\, = \,\,18} $ હોય, તો અવલોકનનો ${{\text{x}}_{\text{1}}},\,{x_2}\,.........\,\,{x_{10}}$ નું પ્રમાણિત વિચલન મેળવો.
$\frac{2}{5}$
$\frac{3}{5}$
$\frac{4}{5}$
આપેલ પૈકી એક પણ નહિં
$40$ અવલોકનનું સરેરાશ વિચલન અને પ્રમાણિત વિચલન અનુક્રમે $30$ અને $5$ છે. જો પછીથી માલૂમ પડ્યું કે બે અવલોકનો $12$ અને $10$ ભૂલથી લેવાય ગયા છે . જો $\sigma$ એ અવલોકનો દૂર કર્યા પછીનું પ્રમાણિત વિચલન હોય તો $38 \sigma^{2}$ ની કિમંત $.........$ થાય.
ધારો કે વસ્તી $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$ એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?
ધારોકે માહિતી
$X$ | $1$ | $3$ | $5$ | $7$ | $9$ |
આવૃતિ $(f)$ | $4$ | $24$ | $28$ | $\alpha$ | $8$ |
નો મધ્યક $5$ છે.જો માહિતીના મધ્યક સાપેક્ષ સરેરાશ વિચલન અને વિચરણ અનુક્રમે $m$ અને $\sigma^2$ હોય, તો $\frac{3 \alpha}{m+\sigma^2}=........$
જો $x_i $ નું પ્રમાણિત વિચલન $10$ હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?
$100$ અવલોકનોના સમૂહનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $3 $ છે. પછીથી જાણ થાય છે કે ત્રણ અવલોકનો $21, 21$ અને $18$ ખોટાં હતાં. આ ખોટાં અવલોકનોને દૂર કરવામાં આવે તો મધ્યક અને પ્રમાણિત વિચલન શોધો.