વિર્ધાર્થીંને  પ્રથમ, દ્વિતીય કે તૃત્તીય ગ્રેડમાં પાસ થાય કે ઘટનાઓ $A, B$ અને $C$ ની સંભાવનાઓ અનક્રમે $1/10, 3/5$ અને $1/4$ હોય, તો તે નાપાસ (ચોથા ગ્રેડ) થાય તેની સંભાવના ……. છે.

  • A

    $\frac{{197}}{{200}}$

  • B

    $\frac{{27}}{{100}}$

  • C

    $\frac{{83}}{{100}}$

  • D

    આમથી એકપણ નહી

Similar Questions

નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો : 

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.35$  ........... $0.25$  $0.6$

જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને  $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $

  • [IIT 1990]

ધારો કે $X$ અને $Y$ ઘટનાઓ એવી હોય કે જેથી  $P(X  \cup  Y) = P(X \cap Y).$

  વિધાન $- 1 : $$P(X \cap Y ) = P(X' \cap Y') = 0$

  વિધાન $- 2 :$ $P(X) + P(Y) = 2P(X  \cap Y).$

ત્રણ ઘટનાઓ  $A, B$ અને $C,$ માટે $P($  માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $)  = {p^2},$ કે જ્યાં  $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.

  • [IIT 1996]

જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને  $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.