$p :$ સુમન તેજસ્વી છે.
$q :$ સુમન ધનવાન છે.
$r :$ સુમન પ્રામાણિક છે.
વિધાન ‘‘જો સુમન ધનવાન હોય તો અને તો જ સુમન તેજસ્વી અને અપ્રમાણિક હોય’’ નું નિષેધ વિધાન કેવી રીતે દર્શાવી શકાય છે ?
$\sim q \Leftrightarrow \sim p \wedge r$
$\sim (p \wedge \sim r) \Leftrightarrow q$
$\sim p \wedge (q \Leftrightarrow \sim r)$
$\sim (q \Leftrightarrow (p \wedge \sim r))$
જો વિધાન $(P \wedge(\sim R)) \rightarrow((\sim R) \wedge Q)$ નું સત્યાર્થા $F$ હોય તો આપેલ પૈકી કોનું સત્યાર્થા $F$ થાય ?
ધારો કે $\Delta, \nabla \in\{\wedge, v\}$ એવાં છે કે જેથી $p$ $\nabla\,q \Rightarrow(( p \Delta q ) \nabla r )$ એ નિત્યસત્ય $(tautology)$ થાય.તો $( p \nabla q ) \Delta\,r$ એ $\dots\dots\dots$ને તાર્કિક રીતે સમકક્ષ છે.
નીચે પૈકીનું કયું $(p \wedge q)$ સાથે તાર્કિક સમતુલ્યતા ધરાવે છે ?
આપેલ વિધાનનું નિષેધ કરો : -
"દરેક $M\,>\,0$ માટે $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
$ \sim s \vee \left( { \sim r \wedge s} \right)$ નું નિષેધ . . . . . . . ને સમાનાર્થી છે.