જો સમાંતર શ્રેણીનું પ્રથમ અને અંતિમ પદ $a$ અને $ℓ $ તથા તેના દરેક પદોનો સરવાળો $S$ થાય, તો તેનો સામાન્ય તફાવત કેટલો થાય ?
$\frac{{{\ell ^2}\, + \,{a^2}}}{{2S\, - \,\ell \, - \,a}}\,$
$\frac{{{\ell ^2}\, - \,{a^2}}}{{2S\, - \,\ell \, - \,a}}$
$\frac{{{\ell ^2}\, - \,{a^2}}}{{2S\, + \,\ell \, + \,a}}$
આપેલ પૈકી એક પણ નહિ
જો $a_1, a_2, a_3, .... a_{21}$ એ સમાંતર શ્રેણીમાં હોય અને $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ થાય તો $\sum\limits_{r = 1}^{21} {{a_r}} $ ની કિમત મેળવો
અહી $S_{n}$ એ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો દર્શાવે છે. જો $S_{3 n}=3 S_{2 n}$ હોય તો $\frac{S_{4 n}}{S_{2 n}}$ ની કિમંત મેળવો.
ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?
જો શ્રેણી $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ ના $n$ પદોનો સરવાળો $435\sqrt 3 $ થાય તો $n$ ની કિમત મેળવો.
જો બે સમાંતર શ્રેણીઓના $n$ પદોના સરવાળાનો ગુણોત્તર $(7n + 1); (4n + 27),$ હોય, તો તેમના $11$ માં પદોનો ગુણોત્તર કેટલો થાય ?