જો શ્રેણીનું $n$ મું પદ $n(n+1)$ હોય તો તેના $n$ પદોનો સરવાળો કેટલો થાય ?
$\frac{{n(n + 1)\,(n + 2)}}{3}$
$\frac{{(n\, + \,1)\,(n\, + \,2)\,(n\, + \,3)}}{{12}}$
$n^2 (n + 2)$
$n (n + 1) (n + 2)$
સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$
સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$ $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$
સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે. જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો.
અહી $x_n, y_n, z_n, w_n$ એ ધન પદો ધરાવતી ભિન્ન સમાંતર શ્રેણીના $n^{th}$ પદો છે જો $x_4 + y_4 + z_4 + w_4 = 8$ અને $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ હોય તો $x_{20}.y_{20}.z_{20}.w_{20}$ ની મહત્તમ કિમત મેળવો
$a$ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો કેટલો થાય ?