$\,\left( {\,{\rm{2\hat i}}\,\, + \;\,{\rm{3\hat j}}\,\, + \;\,{\rm{\hat k}}\,} \right)\,\,\,$ અને $ \,\left( {\,\hat i\,\, - \,\,\hat j\,\, + \;\,2\hat k\,} \right)$ આ બે સદીશોની લંબ દિશા માનો એકમ સદીશ = ......
$\frac{1}{{\sqrt {67} }}\,\,\left( {7\hat i\,\, - \,\,3\hat j\,\, - \,\,5k} \right)$
$\frac{1}{{\sqrt {72} }}\,\,\left( {7\hat i\,\, + \,\,3\hat j\,\, - \,\,5k} \right)$
$\frac{1}{{\sqrt {79} }}\,\,\left( {7\hat i\,\, + \,\,3\hat j\,\, + \,\,5k} \right)$
$\frac{1}{{\sqrt {83} }}\,\,\left( {7\hat i\,\, - \,\,3\hat j\,\, - \,\,5k} \right)$
બે સદિશો $\overrightarrow {A} $ અને $\overrightarrow {B} $ અને તેમની વચ્ચેનો ખૂણો $\theta$, જો $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ હોય, તો $\theta$ નું મૂલ્ય કેટલું હશે?
બે સદિશના સદિશ ગુણાકારની વ્યાખ્યા લખો.
જો $\overrightarrow P .\overrightarrow Q = PQ,$ તો $\overrightarrow P $ અને $\overrightarrow Q $ બંને વચ્ચે નો ખૂણો ....... $^o$ હશે.
ત્રણ કણ ${P}, {Q}$ અને ${R}$ અનુક્રમે સદીશ ${A}=\hat{{i}}+\hat{{j}}, {B}=\hat{{j}}+\hat{{k}}$ અને ${C}=-\hat{{i}}+\hat{{j}}$ ની દિશામાં ગતિ કરે છે. તે એક બિંદુ પર અથડાય છે અને જુદી જુદી દિશામાં ગતિ કરે છે. હવે કણ $P$ એ સદીશ $\vec{A}$ અને $\vec{B}$ ને સમાવતા સમતલને લંબ ગતિ કરે છે. તેવી જ રીતે કણ $Q$ એ સદીશ $\vec{A}$ અને $\vec{C}$ ને સમાવતા સમતલને લંબ ગતિ કરે છે. કણ $P$ અને $Q$ ની ગતિની દિશા વચ્ચેનો ખૂણો $\cos ^{-1}\left(\frac{1}{\sqrt{x}}\right)$ છે. તો $x$ નું મૂલ્ય કેટલું હશે?