જો $\vec P , \vec Q $ અને $\vec R $ ના મૂલ્યો $5$,$12$ અને $13$ એકમ છે અને જો $\vec P + \vec Q =\vec R $ હોય તો $\vec Q $ અને $\vec R $ વચ્ચેનો ખૂણો ........ હોય
${\cos ^{ - 1}}\frac{5}{{12}}$
${\cos ^{ - 1}}\frac{5}{{13}}$
${\cos ^{ - 1}}\frac{{12}}{{13}}$
${\cos ^{ - 1}}\frac{2}{{13}}$
આકૃતિમાં $ABCDEF$ એક સમષટ્કોણ છે. $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ નું મૂલ્ય શું થશે? ($\overrightarrow {AO} $ માં)
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$
$ (4, -4, 0)$ અને $(-2,- 2, 0)$ બિંદુ વચ્ચે રહેલ સદીશનું મૂલ્ય કેટલું થાય?
અલગ અલગ મૂલ્ય ધરાવતાં એક જ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે છે?