બે સમાન મૂલ્ય વાળા બળોના પરિણામનો વર્ગ એ તેમના ત્રણ ગણા ગુણાકારના મૂલ્યને સમાન હોય તો તેમના વચ્ચેનો ખૂણો ........ $^o$ હશે .
$0$
$45$
$60$
$90$
ત્રણ છોકરીઓ $200\, m$ ત્રિજ્યાવાળી વર્તુળાકાર રિંગમાં બરફની સપાટી પર સ્કેટિંગ કરી રહી છે તે સપાટીની કિનારી પર બિંદુ $P$ થી સ્કેટિંગ શરૂ કરે છે તથા $P$ ના વ્યાસાંત બિંદુ $Q$ પર જુદા જુદા પથો પર થઈનેઆકૃતિ માં દર્શાવ્યા પ્રમાણે પહોંચે છે. દરેક છોકરીના સ્થાનાંતર સદિશનું માન કેટલું છે ? કઈ છોકરી માટે તેનું માન તેની મૂળ સ્કેટની પથલંબાઈ જેટલું થશે?
અલગ અલગ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે ?
વસ્તુ ઉપ૨ $\vec{F}_1$ અને $\vec{F}_2$ બળ પ્રવર્ત છે. એક બળનું મૂલ્ય બીજા બળ કરતા ત્રણ ગણું છે અને આ બે બળોનું પરિણામી બળ મૂલ્યમાં મોટા બળ જેટલું મળે છે. બળ $\vec{F}_1$ અને $\vec{F}_2$ વચ્ચેનો કોણ $\cos ^{-1}\left(\frac{1}{n}\right)$ છે. $|n|$ નું મૂલ્ય. . . . . . . . .થશે.
બે સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણની રીત સમજાવો. સમજાવો કે આ રીત ત્રિકોણની રીતને સમતુલ્ય છે.