$S(r)\,\, = \,\,\frac{Q}{{\pi {R^4}}}\,r$ એ $R$ ત્રિજ્યા અને કુલ વિદ્યુતભાર $Q$ વાળા એક ધન ગોળાના વિદ્યુતભાર વિતરણની ઘનતા આપે છે. ગોળાના કેન્દ્રથી $r_1$ અંતરે ગોળાની અંદરના બિંદુ $P$ માટે વિદ્યુતક્ષેત્રનું મૂલ્ય ....... છે.

  • A

    $\frac{{Qr_1^2}}{{4\pi \,\,{ \in _0}\,\,{R^4}}}$

  • B

    $\frac{{Qr_1^2}}{{3\pi \,\,{ \in _0}\,{R^4}}}$

  • C

    $0$

  • D

    $\frac{Q}{{4\pi \,\,{ \in _0}\,r_1^2}}$

Similar Questions

$R$ ત્રિજયાનો નકકર ગોળા પર સમાન રીતે વિદ્યુતભાર  ફેલાયેલો છે.તો વિદ્યુતક્ષેત્ર $(E)$ અને કેન્દ્રથી અંતર $r$ વચ્ચેનો સંબંધ શું થાય? (r < R)

$R$ ત્રિજ્યા ધરાવતા ઘન ગોળની વિજભાર ઘનતા $0 \leq r \leq R$ માટે $\rho  = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ મુજબ આપવામાં આવે છે. તો બોલની બહાર વિદ્યુતક્ષેત્ર કેટલું હશે?

  • [JEE MAIN 2018]

$+\sigma_{\mathrm{s}} \mathrm{C} / \mathrm{m}^2$ જેટલી નિયમિત પૃષ્ઠ વિદ્યુતભાર ધનતા ધરાવતી એક અનંત સમતલ તક્તિને $x-y$ સમતલમાં મૂકવામાં આવે છે. બીજા એક $+\lambda_{\mathrm{e}} \mathrm{C} / \mathrm{m}$ જેટલી નિયમિત રેખીય વિધુતભાર ધનતા ધરાવતા અનંત લંબાઈના લાંબા તાર ને $z=4 \mathrm{~m}$ સમતલ અને $y$-અક્ષને સમાંતર રાખવામાં આવે છે. જો મૂલ્યોમાં $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ હોય તો $(0,0,2)$ સ્થાન આગળ તક્તિ ( પૃષ્ઠ) વિદ્યુતભાર અને રેખીય વિધુત ભાર ને કારણે મળતા વિધુતક્ષેત્રનાં મૂલ્યોનો ગુણોતર. . . . . છે.

  • [JEE MAIN 2024]

$R$ ત્રિજ્યાના એક અવાહક ગોળાના કદ પર વિદ્યુતભાર $Q$ સમાન રીતે વિતરણ પામેલો છે. $b$ ત્રિજ્યા $(b > R)$ ની પાતળી ધાતુની કવચ વડે ગોળાની આજુબાજુ $-Q$ વિદ્યુતભાર છે. કવચ અને ગોળા વચ્ચેની જગ્યા હવાથી ભરેલી છે. નીચેના પૈકી કયો આલેખ વિદ્યુતક્ષેત્રને સંલગ્ન સાચી રજૂઆત દર્શાવે છે ?

એક પોલા વિધુતભારિત સુવાહકની સપાટી પર એક નાનું છિદ્ર કાપેલ છે. દર્શાવો કે તે છિદ્રમાં વિધુતક્ષેત્ર $\left( {\sigma /2{\varepsilon _0}} \right)\hat n$ છે. જ્યાં, ${\hat n}$ બહાર તરફની લંબ દિશામનો એકમ સદિશ છે. અને $\sigma $ છિદ્રની નજીક વિધુતભારની પૃષ્ઠઘનતા છે.