$\frac{{2\sin \theta \,\tan \theta (1 - \tan \theta ) + 2\sin \theta {{\sec }^2}\theta }}{{{{(1 + \tan \theta )}^2}}} = $

  • A

    $\frac{{\sin \,\theta }}{{1 + \tan \theta }}$

  • B

    $\frac{{2\,\sin \theta }}{{1 + \tan \theta }}$

  • C

    $\frac{{2\sin \theta }}{{{{(1 + \tan \theta )}^2}}}$

  • D

    None of these

Similar Questions

Prove that: $\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$

Find the radian measures corresponding to the following degree measures:

$-47^{\circ} 30^{\prime}$

If $\sin x + {\sin ^2}x = 1$, then the value of ${\cos ^{12}}x + 3{\cos ^{10}}x + 3{\cos ^8}x + {\cos ^6}x - 2$ is equal to

The value of $\cos A - \sin A$ when $A = \frac{{5\pi }}{4},$ is

The equation ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ is possible only when