$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $
$0$
$-39$
$96$
$57$
$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$ નો અવયવ . . . .થાય.
જો ત્રિકોણનું ક્ષેત્રફળ $5$ એકમ હોય અને તેના બે શિરોબિંદુ $A(2, 1), B(3, -2)$ હોય અને ત્રીજું શિરોબિંદુ રેખા $y = x + 3$ પર આવેલ હોય તો ત્રીજા શિરોબિંદુના યામ મેળવો.
જો $d \in R$, અને $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta \in \left[ {0,2\pi } \right]$. જો $det (A)$ ની ન્યૂનતમ કિમંત $8$, હોય તો $d$ મેળવો.
સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .