$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $

  • A

    $0$

  • B

    $-39$

  • C

    $96$

  • D

    $57$

Similar Questions

The system of equations : $2x\, \cos^2\theta + y\, \sin2\theta - 2\sin\theta = 0$ $x\, \sin2\theta + 2y\, \sin^2\theta = - 2\, \cos\theta$ $x\, \sin\theta - y \cos\theta = 0$ , for all values of $\theta$ , can

The value of the determinant $\left| {\begin{array}{*{20}{c}}{{a^2}}&a&1\\{\cos \,(nx)}&{\cos \,(n\, + \,1)\,x}&{\cos \,(n\, + \,2)\,x}\\{\sin \,(nx)}&{\sin \,(n\, + \,1)\,x}&{\sin \,(n\, + \,2)\,x}\end{array}} \right|$ is independent of :

If the lines $x + 2ay + a = 0, x + 3by + b = 0$ and $x + 4cy + c = 0$ are concurrent, then $a, b$  and $c$ are in :-

If $a,b,c$ are respectively the ${p^{th}},{q^{th}}{r^{th}}$terms of an $A.P.,$ the $\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $

If $a \ne 6,b,c$ satisfy $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$then $abc = $