The following system of linear equations $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$ ;$x-y+4 z=8$
If $ 5$ is one root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$, then other two roots of the equation are
The value of $'a'$ for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ has a non-zero solution is :-
The value of the determinant$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$is equal to
Set of equations $a + b - 2c = 0,$ $2a - 3b + c = 0$ and $a - 5b + 4c = \alpha $ is consistent for $\alpha$ equal to