The value of the determinant $\left| {\begin{array}{*{20}{c}}{{a^2}}&a&1\\{\cos \,(nx)}&{\cos \,(n\, + \,1)\,x}&{\cos \,(n\, + \,2)\,x}\\{\sin \,(nx)}&{\sin \,(n\, + \,1)\,x}&{\sin \,(n\, + \,2)\,x}\end{array}} \right|$ is independent of :

  • A
    $n$
  • B
    $a$
  • C
    $x$
  • D
    $a , n$ and $x$

Similar Questions

The following system of linear equations  $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$  ;$x-y+4 z=8$

  • [JEE MAIN 2021]

If $ 5$  is one root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$, then other two roots of the equation are

The value of $'a'$ for which the system of equation  $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$  has a non-zero solution is :-

The value of the determinant$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$is equal to

Set of equations $a + b - 2c = 0,$ $2a - 3b + c = 0$ and $a - 5b + 4c = \alpha $ is consistent for $\alpha$ equal to