If $a \ne 6,b,c$ satisfy $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$then $abc = $

  • A

    $a + b + c$

  • B

    $0$

  • C

    ${b^3}$

  • D

    $ab + bc$

Similar Questions

If $\left| {\,\begin{array}{*{20}{c}}{3x - 8}&3&3\\3&{3x - 8}&3\\3&3&{3x - 8}\end{array}\,} \right| = 0,$ then the values of $x$ are

Number of values of $m$ for which the lines $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ are concurrent, are

If $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
  {\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\ 
  {\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\ 
  {\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)} 
\end{array}} \right|$ and $f(10) = 10$ then $f(\pi)$ is equal to

If $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha \end{array}} \right]$ and $|{A^3}|$=125, then $\alpha = $

  • [IIT 2004]

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $