The value of $k$ for which the set of equations $x + ky + 3z = 0,$ $3x + ky - 2z = 0,$ $2x + 3y - 4z = 0$ has a non trivial solution over the set of rationals is

  • A

    $15$

  • B

    $31/2$

  • C

    $16$

  • D

    $33/2$

Similar Questions

Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$

Find values of $x$ for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

If the system of linear equations

$2 x+y-z=3$

$x-y-z=\alpha$

$3 x+3 y+\beta z=3$

has infinitely many solution, then $\alpha+\beta-\alpha \beta$ is equal to .... .

  • [JEE MAIN 2021]

Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ is-

${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ this system of equations has