$\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + y}&1\\1&1&{1 + z}\end{array}\,} \right| = $
$xyz\left( {1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)$
$xyz$
$1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$
$\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$
If $f(x) = \left| {\begin{array}{*{20}{c}}{x - 3}&{2{x^2} - 18}&{3{x^3} - 81}\\{x - 5}&{2{x^2} - 50}&{4{x^3} - 500}\\1&2&3\end{array}} \right|$ then $f(1).f(3) + f(3).f(5) + f(5).f(1)$=
Let $a-2 b+c=1$
If $f(x)=\left|\begin{array}{lll}{x+a} & {x+2} & {x+1} \\ {x+b} & {x+3} & {x+2} \\ {x+c} & {x+4} & {x+3}\end{array}\right|,$ then
$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $
If $\omega $ is the cube root of unity, then $\left| {\begin{array}{*{20}{c}}1&\omega &{{\omega ^2}}\\\omega &{{\omega ^2}}&1\\{{\omega ^2}}&1&\omega \end{array}} \right|$=
By using properties of determinants, show that:
$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$