Let $A_1, A_2, A_3$ be the three A.P. with the same common difference $d$ and having their first terms as $A , A +1, A +2$, respectively. Let $a , b , c$ be the $7^{\text {th }}, 9^{\text {th }}, 17^{\text {th }}$ terms of $A_1, A_2, A_3$, respectively such that $\left|\begin{array}{lll} a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0$ If $a=29$, then the sum of first $20$ terms of an $AP$ whose first term is $c - a - b$ and common difference is $\frac{ d }{12}$, is equal to $........$.
$494$
$495$
$496$
$498$
Suppose $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ and $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, then
The ordered pair $(a, b)$, for which the system of linear equations $3 x-2 y+z=b$ ; $5 x-8 y+9 z=3$ ; $2 x+y+a z=-1$ has no solution, is
Two fair dice are thrown. The numbers on them are taken as $\lambda$ and $\mu$, and a system of linear equations
$x+y+z=5$ ; $x+2 y+3 z=\mu$ ; $x+3 y+\lambda z=1$
is constructed. If $\mathrm{p}$ is the probability that the system has a unique solution and $\mathrm{q}$ is the probability that the system has no solution, then :
Let $x, y, z > 0$ are respectively $2^{nd}, 3^{rd}, 4^{th}$ term of $G.P.$ and $\Delta = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$ , (where $r$ is common ratio), then $k=$ .......