$\left| {\,\begin{array}{*{20}{c}}1&a&b\\{ - a}&1&c\\{ - b}&{ - c}&1\end{array}\,} \right| = $

  • A

    $1 + {a^2} + {b^2} + {c^2}$

  • B

    $1 - {a^2} + {b^2} + {c^2}$

  • C

    $1 + {a^2} + {b^2} - {c^2}$

  • D

    $1 + {a^2} - {b^2} + {c^2}$

Similar Questions

दिये गए सारणिक $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$ का विभाजन संख्या $5$ से करने पर शेषफल का मान होगा :

  • [KVPY 2015]

यदि निकाय के समीकरणों $x - ky - z = 0$, $kx - y - z = 0$ तथा $x + y - z = 0$ का एक अशून्य हल है, तो $ k $ के संभावित मान होंगे

  • [IIT 2000]

सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ का मान होगा

निम्न समीकरण निकाय पर विचार कीजिए : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ जहाँ $a , b$ तथा $c$ वास्तविक अचर हैं। तो इस समीकरण निकाय:

  • [JEE MAIN 2021]

माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है

  • [JEE MAIN 2023]