$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $

  • A

    $1$

  • B

    $0$

  • C

    $x$

  • D

    $xy$

Similar Questions

જો $A, B, C$ એ ત્રિકોણના ખૂણા હોય તો નિશ્ચાયક $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ ની કિમંત મેળવો.

જો $a,b,c$ એ સમાંતર શ્રેણીના ${p^{th}},{q^{th}}{r^{th}}$ માં પદ હોય તો ,$\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $

જો $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ અને $A$ અને $B$ એ અનુક્રમે $f(\theta )$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો $(A , B)$ મેળવો.

  • [JEE MAIN 2014]

જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત  . . .

  • [JEE MAIN 2014]

જો કોઈક વાસ્તવિક સંખ્યા $\alpha$ અને $\beta$  માટે આપલે સમતલો  $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ નો છેદગણ અવકાશમાં રેખા દર્શાવે છે  તો $\alpha+\beta$  મેળવો.

  • [JEE MAIN 2020]