$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=

  • A

    $\frac{{{2^{n + 1}}}}{{n + 1}}$

  • B

    $\frac{{{2^{n + 1}} - 1}}{{n + 1}}$

  • C

    $\frac{{{2^n}}}{{n + 1}}$

  • D

    इनमें से कोई नहीं

Similar Questions

${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n},$ तो $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

यदि $\sum_{ r =0}^{25}\left\{{ }^{50} C _{ r } \cdot{ }^{50- r } C _{25- r }\right\}= K \left({ }^{50} C _{25}\right)$ हो, तो $K$ का मान होगा

  • [JEE MAIN 2019]

$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ में $\mathrm{x}^{301}$ का गुणांक है :

  • [JEE MAIN 2023]

माना $\alpha=\sum_{k=0}^{\mathrm{n}}\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ तथा $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$ हैं। यदि $5 \alpha=6 \beta$ हैं, तो $\mathrm{n}$ बराबर है ............

  • [JEE MAIN 2024]