$\{ x \in R:|x - 2|\,\, = {x^2}\} = $
$\{ -1, 2\}$
$\{1, 2\}$
$\{ -1, -2\}$
$\{1, -2\}$
यदि $72^x \cdot 48^y=6^{x y}$ हो, जहाँ $x$ तथा $y$ अशून्य परिमेय संख्याएँ हैं, तब $x+y$ का मान होगा
यदि समीकरण $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$ का एक मूल $3 + i\sqrt 6 $ है, तब अन्य मूल होंगे
यदि $a + b + c =1, ab + bc + ca =2$ तथा $abc =3$ हैं, तो $a ^{4}+ b ^{4}+ c ^{4}$ बराबर है ................ |
दो बहुपद $p(x), q(x)$ इस प्रकार हैं: $p(x)=x^2-5 x+a$ और $q(x)=x^2-3 x+b$ जहां $a, b$ प्राकृत संख्याएँ हैं । मान लें कि $\operatorname{hcf}(p(x), q(x))=x-1$ और $k(x)=\operatorname{lcm}(p(x), q(x))$ है। यदि बहुपद $k(x)$ के अधिकतम घात के गुणांक का मान 1 है, तो बहुपद $(x-1)+k(x)$ के शून्यकों का योग होगा:
मान लें कि समीकरण $(1+a+b)^2=3\left(1+a^2+b^2\right)$ में $a$ तथा $b$ वास्तविक संख्याएँ है, तब