$\{ x \in R:|x - 2|\,\, = {x^2}\} = $
$\{ -1, 2\}$
$\{1, 2\}$
$\{ -1, -2\}$
$\{1, -2\}$
If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are
If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-
Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are