$\sqrt {(3 + \sqrt 5 )} $ is equal to

  • A

    $\sqrt 5 + 1$

  • B

    $\sqrt 3 + \sqrt 2 $

  • C

    $(\sqrt 5 + 1)/\sqrt 2 $

  • D

    ${1 \over 2}(\sqrt 5 + 1)$

Similar Questions

${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $

The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is

${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $

The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $