$\sqrt {(3 + \sqrt 5 )} = . .$ .
$\sqrt 5 + 1$
$\sqrt 3 + \sqrt 2 $
$(\sqrt 5 + 1)/\sqrt 2 $
${1 \over 2}(\sqrt 5 + 1)$
જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
જો ${2^x} = {4^y} = {8^z}$ અને $xyz = 288,$ તો ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
જો ${x^y} = {y^x},$ તો ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ કે જ્યાં $k = . . . . $
જો ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, તો $A+B+C+D= . . .$
${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $