$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
$p$
$\sim\,p$
$q$
$\sim\,q$
The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.
If $p \Rightarrow (q \vee r)$ is false, then the truth values of $p, q, r$ are respectively
The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to
The statment $ \sim \left( {p \leftrightarrow \sim q} \right)$ is
The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to: