The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:
$P \vee Q$
$\sim(P \Rightarrow Q) \Leftrightarrow P \wedge \sim Q$
$P \wedge \sim Q$
$\sim(P \Rightarrow Q)$
The negative of $q\; \vee \sim (p \wedge r)$ is
The statement $( p \wedge q ) \Rightarrow( p \wedge r )$ is equivalent to.
Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is
The false statement in the following is
The contrapositive of $(p \vee q) \Rightarrow r$ is