The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to
$ \sim p\, \wedge \sim \,q$
$ p\, \wedge \sim \,q$
$ \sim p\, \wedge \,\,q$
$p\, \wedge \,\,q$
Which one of the following Boolean expressions is a tautology?
Which of the following is always true
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
Negation of the conditional : “If it rains, I shall go to school” is