The number of continuous functions $f :\left[0, \frac{3}{2}\right] \rightarrow(0, \infty)$ satisfying the equation $4 \int \limits_0^{3 / 2} f(x) d x+125 \int \limits_0^{3 / 2} \frac{d x}{\sqrt{f(x)+x^2}}=108$ is

  • [KVPY 2021]
  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    greater than $2$

Similar Questions

If $\alpha \in (2 , 3) $ then number of solution of the equation $\int\limits_0^\alpha  {}  \cos (x + \alpha^2)\, dx = \sin \,\alpha$ is :

The value of the integral $\sum\limits_{k = 1}^n {\int_0^1 {f(k - 1 + x)\,dx} } $ is

Let $f$ be a continuous function defined on $[0,1]$ such that $\int_0^1 f^2(x) d x=\left(\int_0^1 f(x) d x\right)^2$. Then, the range of $f$

  • [KVPY 2016]

If for all real triplets $(a, b, c), f(x)=a+b x+c x^{2}$ then $\int \limits_{0}^{1} f(\mathrm{x}) \mathrm{d} \mathrm{x}$ is equal to 

  • [JEE MAIN 2020]

$\int\limits_a^b {{\mathop{\rm sgn}} \,x} \,\,dx$ $=$ (where $a, b \in R$)