$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$
$0$
$2$
$1$
$-1$
Evaluate:
$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$