$(a)$ आवेश $4 \times 10^{-7} \,C$ के कारण इससे $9\, cm$ दूरी पर स्थित किसी बिंदु $P$ पर विभव परिकलित कीजिए
$(b)$ अब, आवेश $2 \times 10^{-9}\, C$ को अनंत से बिंदु $P$ तक लाने में किया गया कार्य ज्ञात कीजिए। क्या उत्तर जिस पथ के अनुदिश आवेश को लाया गया है उस पर निर्भर करता है?
$(a)$ $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}=9 \times 10^{9} \,Nm ^{2}\, C ^{-2} \times \frac{4 \times 10^{-7} \,C }{0.09 \,m }$
$=4 \times 10^{4}\, V$
$(b)$ $W=q V=2 \times 10^{-9} \,C \times 4 \times 10^{4}\, V$
$=8 \times 10^{-5} \,J$
No. work done will be path independent. Any arbitrary infinitestmal path can be resolved into two perpendicular displacements: One along $r$ and another perpendicular to $r$. The work done corresponding to the later will be zero.
दो बिन्दु आवेश $4 q$ व $- q ; x-$अक्ष पर क्रमशः $x =-\frac{ d }{2}$ व $x$ $=\frac{ d }{2}$ पर स्थिर है। यदि एक तीसरे बिन्दु आवेश $'q'$ को मूलबिन्दु से $x = d$ तक अर्धवृत्त के अनुदिश चित्रानुसार ले जाया जाये तो आवेश की ऊर्जा ।
$m$ द्रव्यमान के एक बिन्दु आवेश $q$ को $\ell$ लम्बाई की एक डोरी द्वारा ऊर्ध्वाधर रूप से लटकाया जाता है। अब द्विध्रुव आघूर्ण $\overrightarrow{ p }$ के एक बिन्दु द्विध्रुव को अनन्त से $q$ की ओर इस प्रकार लाया जाता है कि आवेश दूर गति करता है। द्विध्रुव की दिशा, कोणों तथा दूरियों सहित निकाय की अन्तिम साम्य स्थिति नीचे चित्र में दर्शायी गई है। यदि द्विध्रुव को इस स्थिति तक लाने में किया गया कार्य $N \times( mgh )$ है, जहाँ $g$ गुरूत्वीय त्वरण है, जब $N$ का मान. . . . . . . है। (ध्यान दीजिये की बिन्दु द्रव्यमान को साम्यावस्था में बनाए रखते हुए तीन समतलीय बलों के लिए, $\frac{ F }{\sin \theta}$ सभी बलों के लिए समान है, जहाँ $F$ कोई एक बल है तथा $\theta$ अन्य दो बलों के मध्य कोण है।)
एक इलेक्ट्रॉन निम्न विभव क्षेत्र ${V_1}$ से उच्च विभव क्षेत्र ${V_2}$ में प्रवेश करता है। इसका वेग
एक पिलैट (Pellet) जिस पर $0.5$ कूलॉम आवेश है, को $2000$ वोल्ट से त्वरित किया जाता है। इसकी गतिज ऊर्जा है
एक वर्ग की प्रत्येक भुजा की लम्बाई $'a'$ है, इसके चारों कोनों पर $4$ समान $Q$ आवेशों को रखा जाता है। उसके केन्द्र से अनन्त तक
$-Q$ आवेश को हटाने में किया गया कार्य है