જો $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$ હોય, તો સાબિત કરો કે $|3 A|=27|A|$.
The given matrix is $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$
It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $(C_1 )$ for easier calculation.
$|A|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$
$\therefore 27|A|=27(4)=108......(i)$
${{\text{Now, }}3A = 3\left[ {\begin{array}{*{20}{l}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]}$
${\therefore \,|3A| = 3\left| {\begin{array}{*{20}{l}}
3&6 \\
0&{12}
\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}
0&3 \\
0&{12}
\end{array}} \right| + 0\left| {\begin{array}{*{20}{l}}
0&3 \\
3&6
\end{array}} \right|}$
${\begin{array}{*{20}{l}}
{ = 3(36 - 0) = 3(36) = 108}
\end{array}}......(ii)$
From equations $( i )$ and $(ii)$, we have:
$|3 A|=27|A|$
Hence, the given result is proved.
જો $\alpha+\beta+\gamma=2 \pi$ તો સમીકરણ સંહતિ $x+(\cos \gamma) y+(\cos \beta) z=0$ ; $(\cos \gamma) x+y+(\cos \alpha) z=0$ ; $(\cos \beta) x+(\cos \alpha) y+z=0$ નો ઉકેલગણ . . . ..
જો સુરેખ સમીકરણ સંહતિ $2 x + y - z =7$ ; $x-3 y+2 z=1$ ; $x +4 y +\delta z = k$, જ્યાં $\delta, k \in R$ ને અસંખ્ય ઉકેલો હોય,તો $\delta+ k=\dots\dots\dots$
સમીકરણ સંહતિ ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ ના ઉકેલની સંખ્યા મેળવો.
જે સમીકરણ સંહતિ
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
ને અસંખ્ય ઉકેલો હોય, તો $\lambda^4-\mu=$.............