જો $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$ હોય, તો સાબિત કરો કે $|3 A|=27|A|$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given matrix is $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $(C_1 )$ for easier calculation.

$|A|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$

$\therefore 27|A|=27(4)=108......(i)$

${{\text{Now, }}3A = 3\left[ {\begin{array}{*{20}{l}}
  1&0&1 \\ 
  0&1&2 \\ 
  0&0&4 
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
  3&0&3 \\ 
  0&3&6 \\ 
  0&0&{12} 
\end{array}} \right]}$

${\therefore \,|3A| = 3\left| {\begin{array}{*{20}{l}}
  3&6 \\ 
  0&{12} 
\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}
  0&3 \\ 
  0&{12} 
\end{array}} \right| + 0\left| {\begin{array}{*{20}{l}}
  0&3 \\ 
  3&6 
\end{array}} \right|}$

${\begin{array}{*{20}{l}}
  { = 3(36 - 0) = 3(36) = 108} 
\end{array}}......(ii)$

From equations $( i )$ and $(ii)$, we have:

$|3 A|=27|A|$

Hence, the given result is proved.

Similar Questions

જો $\alpha+\beta+\gamma=2 \pi$ તો સમીકરણ સંહતિ  $x+(\cos \gamma) y+(\cos \beta) z=0$  ;  $(\cos \gamma) x+y+(\cos \alpha) z=0$  ; $(\cos \beta) x+(\cos \alpha) y+z=0$ નો ઉકેલગણ . . .  ..

  • [JEE MAIN 2021]

જો સુરેખ સમીકરણ સંહતિ  $2 x + y - z =7$ ; $x-3 y+2 z=1$ ; $x +4 y +\delta z = k$, જ્યાં $\delta, k \in R$ ને અસંખ્ય ઉકેલો હોય,તો  $\delta+ k=\dots\dots\dots$

  • [JEE MAIN 2022]

સમીકરણ સંહતિ ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ ના ઉકેલની સંખ્યા મેળવો.

જે સમીકરણ સંહતિ

$ 11 x+y+\lambda z=-5 $

$ 2 x+3 y+5 z=3 $

$ 8 x-19 y-39 z=\mu$

ને અસંખ્ય ઉકેલો હોય, તો $\lambda^4-\mu=$.............

  • [JEE MAIN 2024]

જો સમીકરણ સંહિતા $2 x-y+z=4$, $5 x+\lambda y+3 z=12$,$100 x-47 y+\mu z=212$ ને અસંખ્ય ઉકેલો હોય તો  $\mu-2 \lambda =. . . ... .$

  • [JEE MAIN 2025]