$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right],$ then show that $|3 A|=27|A|$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given matrix is $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $(C_1 )$ for easier calculation.

$|A|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$

$\therefore 27|A|=27(4)=108......(i)$

${{\text{Now, }}3A = 3\left[ {\begin{array}{*{20}{l}}
  1&0&1 \\ 
  0&1&2 \\ 
  0&0&4 
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
  3&0&3 \\ 
  0&3&6 \\ 
  0&0&{12} 
\end{array}} \right]}$

${\therefore \,|3A| = 3\left| {\begin{array}{*{20}{l}}
  3&6 \\ 
  0&{12} 
\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}
  0&3 \\ 
  0&{12} 
\end{array}} \right| + 0\left| {\begin{array}{*{20}{l}}
  0&3 \\ 
  3&6 
\end{array}} \right|}$

${\begin{array}{*{20}{l}}
  { = 3(36 - 0) = 3(36) = 108} 
\end{array}}......(ii)$

From equations $( i )$ and $(ii)$, we have:

$|3 A|=27|A|$

Hence, the given result is proved.

Similar Questions

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

The maximum value of

$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R \text { is }$

  • [JEE MAIN 2021]

If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is

  • [IIT 1982]

The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by

The number of solutions of the system of equations $2x + y - z = 7,\,\,x - 3y + 2z = 1,\,x + 4y - 3z = 5$ is