$\sum\limits_{r = 1}^{100} {\frac{{\tan \,{2^{r - 1}}}}{{\cos \,{2^r}}}} $ is equal to

  • A

    $tan\,2^{99} -tan\,1$

  • B

    $tan\,2^{100}$

  • C

    $tan\,2^{100} -tan\,1$

  • D

    none of these

Similar Questions

If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $

  • [IIT 1963]

The solution of  $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is 

If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is

If $\tan 2\theta \tan \theta = 1$, then the general value of $\theta $ is

If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is