અનુબદ્ધ સંકર સંખ્યા શોધો : $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$

$=\frac{6+9 i-4 i+6}{2-i+4 i+2}=\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i} $

$=\frac{48-36 i+20 i+15}{16+9}=\frac{63-16 i}{25}=\frac{63}{25}-\frac{16}{25} i$

Therefore, conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ is $\frac{63}{25}+\frac{16}{25} i$.

Similar Questions

ધારો કે  $S=\{z \in C:|z-1|=1$ અને  $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$.ધારો કે  $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ એવી છે કે જેથી  $\left|z_1\right|=\max _{z \in S}|z|$ અને  $\left|z_2\right|=\min _{z \in S}|z|$. તો  $\left|\sqrt{2} z_1-z_2\right|^2$....................

  • [JEE MAIN 2024]

જો $z$ એ સંકર સંખ્યા છે કે જેથી $|z - \bar{z}| = 2$ અને $|z + \bar{z}| = 4 $, હોય તો નીચેનામાંથી ક્યૂ ખોટું છે ?

જો $z$ માટે $\left| z \right| = 1$ અને $z = 1 - \vec z$ તો.

વિધાન $1$ : $z$ એ વાસ્તવિક સંખ્યા છે.

વિધાન $2$ : $z$ નો મુખ્ય કોણાંક $\frac{\pi }{3}$ છે. 

  • [JEE MAIN 2013]

જો $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ તો $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$= . .. . .

જો $\bar z$ એ $z$ ની અનુબદ્ધ સંકર સંખ્યા હોય , તો આપેલ પૈકી ક્યો સંબંધ અસત્ય છે .