Write the following cubes in the expanded form : $(3 a+4 b)^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Comparing the given expression with $(x+y)^{3},$ we find that

$x=3 a$  and     $ y=4 b$

So, using Identity $VI$, we have :

$(3 a+4 b)^{3} =(3 a)^{3}+(4 b)^{3}+3(3 a)(4 b)(3 a+4 b) $

$=27 a^{3}+64 b^{3}+108 a^{2} b+144 a b^{2}$

Similar Questions

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$

Verify : $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

Factorise $6x^2 + 17x + 5$ by splitting the middle term, and by using the Factor Theorem.

Evaluate $105 \times 106$ without multiplying directly.

Evaluate the following products without multiplying directly : $104 \times 96$