What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$
Volume of a cuboid $=($ Length $) \times($ Breadth $) \times($ Height $)$
Volume $=12 ky ^{2}+8 ky -20 k$
We have $12 ky ^{2}+8 ky -20 k =4\left[3 ky ^{2}+2 ky -5 k \right]=4\left[ k \left(3 y ^{2}+2 y -5\right)\right]$
$=4 \times k \times\left(3 y ^{2}+2 y -5\right)$
$=4 k \left[3 y ^{2}-3 y +5 y -5\right]$ (Splitting the middle term)
$=4 k [3 y ( y -1)+5( y -1)]$ $=4 k[(3 y+5)(y-1)]$
$=4 k \times(3 y +5) \times( y -1)$
Thus, the possible dimensions are: $4 k ,\,(3 y +5)$ and $( y -1)$ units.
Evaluate using suitable identities : $(999)^{3}$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=2 x+1, \,\,x=\frac{1}{2}$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$
Factorise : $2 x^{2}+7 x+3$
Factorise of the following : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$