Verify : $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\rm {R.H.S.}$ $=(x+y)\left(x^{2}-x y+y^{2}\right)=x\left(x^{2}-x y+y^{2}\right)+y\left(x^{2}-x y+y^{2}\right)$

$=x^{3}-x^{2} y+x y^{2}+x^{2} y-x y^{2}+y^{3}=x^{3}+y^{3}= $ $\rm {L.H.S.}$

Similar Questions

Use suitable identities to find the products : $(x+8)(x-10)$

Write the coefficients of $x^2$ in each of the following : 

$(i)$ $\frac{\pi}{2} x^{2}+x$               $ (ii)$ $\sqrt{2} x-1$

Find a zero of the polynomial $p(x) = 2x + 1$.

Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$

Factorise : $12 x^{2}-7 x+1$