Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}$
$a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}$
$a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2}$
$a_{4}=4 \cdot \frac{4^{2}+5}{4}=21$
$a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}$
Therefore, the required terms are $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$ and $\frac{75}{2}$
If the sum of the series $2 + 5 + 8 + 11............$ is $60100$, then the number of terms are
If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
Let $S_n$ and $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then $\frac{{{s_n}}}{{{S_{2n}}}}$
If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in
arithmetic progression for a real number $x$ then the value of the determinant $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ is equal to ...... .
Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$