Let $S_n$ and $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then $\frac{{{s_n}}}{{{S_{2n}}}}$
$\frac{{3n - 13}}{{14n + 26}}$
$\frac{{6n - 26}}{{17n + 13}}$
$\frac{{3n - 13}}{{28n + 26}}$
None
Let $s _1, s _2, s _3, \ldots \ldots, s _{10}$ respectively be the sum to 12 terms of 10 A.P.s whose first terms are $1,2,3, \ldots, 10$ and the common differences are $1,3,5, \ldots, 19$ respectively. Then $\sum \limits_{i=1}^{10} s _{ i }$ is equal to
The number of terms common between the two series $2 + 5 + 8 +.....$ upto $50$ terms and the series $3 + 5 + 7 + 9.....$ upto $60$ terms, is
Let $a_1=8, a_2, a_3, \ldots a_n$ be an $A.P.$ If the sum of its first four terms is $50$ and the sum of its last four terms is $170$ , then the product of its middle two terms is
If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is
Jairam purchased a house in Rs. $15000$ and paid Rs. $5000$ at once. Rest money he promised to pay in annual installment of Rs. $1000$ with $10\%$ per annum interest. How much money is to be paid by Jairam $\mathrm{Rs.}$ ...................