Write the coefficient of $x^{2}$ in each of the following:
$(i)$ $(x-1)(3 x-4)$
$(ii)$ $(2 x-5)\left(2 x^{2}-3 x+1\right)$
$(i)$ The given polynomial can be written as:
$(x-1)(3 x-4)=3 x^{2}-4 x-3 x+4$
$=3 x^{2}-7 x+4$
So, coefficient of $x^{2}$ in the given polynomial is $3 .$
$(ii)$ The given polynomial can be written as:
$(2 x-5)\left(2 x^{2}-3 x+1\right)=4 x^{3}-6 x^{2}+2 x-10 x^{2}+15 x-5$
$=4 x^{3}-16 x^{2}+17 x-5$
So, the coefficient of $x^{2}$ in the given polynomial is $-16 .$
Find $p(1), p(2)$ and $p(4)$ for each of the following polynomials
$p(y)=y^{2}-5 y+4$
Classify the following as a constant, linear,quadratic and cubic polynomials:
$4-5 y^{2}$
Find the zero of the polynomial in each of the following cases
$p(x)=3 x-4$
If $a+b+c=5$ and $a b+b c+c a=10,$ then prove that $a^{3}+b^{3}+c^{3}-3 a b c=-25.$
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$