If $a+b+c=5$ and $a b+b c+c a=10,$ then prove that $a^{3}+b^{3}+c^{3}-3 a b c=-25.$
We know that,
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=(a+b+c)\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]$
$=5\left\{a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right\}$
$=5\left(a^{2}+b^{2}+c^{2}-10\right)$
Now, $\quad a+b+c=5$
Squaring both sides, we get
$(a+b+c)^{2}=5^{2}$
$\Rightarrow a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=25$
$\therefore \quad a^{2}+b^{2}+c^{2}+2(10)=25$
$\Rightarrow \quad a^{2}+b^{2}+c^{2}=25-20=5$
Now, $a^{3}+b^{3}+c^{3}-3 a b c=5\left(a^{2}+b^{2}+c^{2}-10\right)$
$=5(5-10)=5(-5)=-25$
Hence, proved.
Classify the following as linear, quadratic or cubic polynomial
$x^{2}-9 x+14$
Factorise
$x^{2}+9 y^{2}+4+6 x y+12 y+4 x$
Factorise the following quadratic polynomials by splitting the middle term
$6 x^{2}+19 x+10$
From the following polynomials find out which of them has $(x-1)$ as a factor
$x^{3}+6 x^{2}-9 x-14$
Without actually calculating the cubes, find the value of each of the following
$(31)^{3}-(16)^{3}-(15)^{3}$