Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
$p ( x )$ will be a multiple of $g ( x )$ if $g ( x )$ divides $p ( x )$
Now, $g(x)=2 x+1$ give $x=-\frac{1}{2}$
Remainder $=p\left(-\frac{1}{2}\right)=2\left(\frac{-1}{2}\right)^{3}-11\left(\frac{-1}{2}\right)^{2}-4\left(\frac{-1}{2}\right)+5$
$=2\left(\frac{-1}{8}\right)-11\left(\frac{1}{4}\right)+2+5=\frac{-1}{4}-\frac{11}{4}+7$
$=\frac{-1-11+28}{4}=\frac{16}{4}=4$
Since remainder $\neq 0,$ So, $p(x)$ is not a multiple of $g(x)$.
Factorise the following quadratic polynomials by splitting the middle term
$6 x^{2}+7 x-20$
Expand
$(2 x-7)(2 x-5)$
Evaluate
$(101)^{2}$
Find the zero of the polynomial in each of the following cases
$q(y)=\pi y+3.14$
Write the coefficients of $x^{2}$ in each of the following polynomials
$3 x^{3}-8 x^{2}+14 x-5$