Which of the following are examples of the null set
$\{ y:y$ is a point common to any two parallellines $\} $
In the following state whether $A=B$ or not :
$A=\{a, b, c, d\} ; B=\{d, c, b, a\}$
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $A \subset B$ and $x \notin B,$ then $x \notin A$
Match each of the set on the left in the roster form with the same set on the right described in set-builder form:
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ is an odd natural number less than $10\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ is natural number and divisor of $6\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $ |
Write the following sets in the set-builder form :
$\{ 2,4,6 \ldots \} $